


Yves Goeleven
Solution Architect & Azure MVP

• Particular Software / NServiceBus

• Side projects

• MessageHandler: Event stream processing & event sourcing framework

• Dish: Static site generator

• ClubManagement.io: Progressive Web Apps for managing sports clubs

• Azure MVP since 2010

• Co-founder & board member @ AZUG.be

• Board member @ Basket Lummen

This means I’m 
old & develop 

software





Web development

A brief history with major milestones 

1993 Today1995

First browser war!
Client side incompatibilities, but 

you could standardize on IE

1996 2004

Second browser war!
More browsers,

more incompatibilities

20092007

Third browser war!
Battle against mobile leads to standardization

2012



Revenge of the static website



Why?

3 reasons

• It’s cheap!

• It’s simple!

• Single codebase for any app (PWA)

• Web, desktop & mobile apps!

• Offline



The story of basketlummen.be
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Increase 
compared to 

previous hosting
Flat rate





That’s more like 
it!

Usage based



More value for less money

New site is a lot bigger than the old one
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Old site

Architecture

Browser

Server

#@ %!)



New site

JAM Stack

Browser

NOT MY PROBLEM!
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New fundraising app

Progressive Web App

Browser

NOT MY PROBLEM!



Setting up cheap hosting

Azure 

Storage

Azure CDN DNS







Required for 

service worker



Setting up cheap hosting

Azure 

Storage

Azure CDN DNS



Why CDN?

2 reasons

• FREE SSL for custom domain names!

• Reduce storage transaction costs

• Ensure cache control headers are set on blobs!
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Dynamic content

The traditional way: render on every request

Browser

Server

#@ %!)



Dynamic content

Not all content is equal

Change rate vs 
user expectations

Real Time Delay Stale

No changes Manual publishing Manual publishing Manual publishing

Occasional On every request Automated publishing Manual publishing

Frequent On every request Automated publishing Manual publishing

In a static site context

• On every request: API call with client side rendering

• Manual publishing: Update the site and publish

• Automated publishing: Plug the publishing process into your business 

processes
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Static site generator

An essential tool in the publishing process

• Renders a website from content files

• Content files in appropriate format

• Text: markdown

• Config: Yaml

• Templates: Handlebars

• A multistep build pipeline (chain of responsibility)

• Read files

• Preprocessing steps

• Rendering

• Postprocessing steps

• Most popular ones: Jekyll, Hexo, Hugo, …



Introducing DISH

Why I built my own static site generator

• A library 

• Plug into my business logic 

• .Net core

• Full control of the pipeline

• E.g. publish to azure storage static websites
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Local Experience

Requires a command line tool

• Write a console app using the library

• Main generation methods

• Run: executes the pipeline

• Serve: hosts the site locally in Kestrel

• Publish: uploads the site to azure storage static websites
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Publishing process

End to end process

Sources in 
github

Pull
Run site 

generation
Publish Purge CDN

Yes, some 
parents do 
submit PR’s

Dish

Manual or 
Microsoft.Azure.

Management.Cdn

Manual or 
invocation from 

code using 
octokit







Building offline apps

Google 
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App Shell
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Queue Pattern

Install on 

desktop



How it works when offline

Service Worker intercepts and serves from IndexedDB

Browser

Services

X



Service Worker

Background worker for a web pages

• Also runs when browser is closed!

• Available events

• Install: Fired whenever the worker gets installed (happens only once)

• Activate: Fired whenever a loaded page connects to the worker

• Fetch: Fired every time a connected client performs a request

• Message: Communication between frontend thread and background worker

• Sync: Fired after device comes online

• Push: Fired when device receives a push notification

• But you need to write code to handle all those events

self.addEventListener('install', function(event){
// your code here
});



Google workbox

A set of common patterns for Service Worker

• A javascript library on top of indexed DB & cache storage responding to service worker events

• Available modules

• Precaching: preload files on install

• Routing: configure how to handle specific web requests

• Strategies: caching strategies

• Expiration: remove cached entries

• BackgroundSync: resubmit commands after coming online

• …

importScripts('https://storage.googleapis.com/workbox-cdn/releases/3.6.1/workbox-sw.js');

workbox.core.setCacheNameDetails({
prefix: 'clubmgmt-fundraising-checkin-cache’,
suffix: ‘1.0.0.0’

});
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App Shell pattern

‘Installation’ of all files of the web app

• Service worker ‘Install’ event
• All essential files for the app will be downloaded and cached
• Route with a ‘Cache-first’ policy: Cache Falling Back to Network

• Files must be versioned
• Revision hashes generated by Dish postprocessing step

• Embed hashes, service worker file must change for changes to take effect

• Your app shell can run offline now, future pages served from cache

workbox.precaching.precacheAndRoute(self.__precacheManifest || []);

self.__precacheManifest = [
{ url:’/index.html', revision: '16a3cdb338289d….74564ccd3db2430bac’ },
{ url:'/css/bootstrap.min.css', revision: '5a3d8c05785485d3….8b5bd7b0f3168fff1bd9a' }, 
{ url:'/css/console.css', revision: '900797671c753ea9b421….f1db2874f32d6264996801' }, 
….

]
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Command Queue pattern

‘Store and forward’ command requests when offline

• Store ‘POST’, ‘PUT’ & ‘DELETE’ requests on failure to send

const queue = new workbox.backgroundSync.Queue('bg-queue', {
onSync: replayRequests,
maxRetentionTime: 7 * 24 * 60 // Retry for max a week

});
const bgSync = {
fetchDidFail: async ({ request }) => {

await queue.pushRequest({ request });
}

}
workbox.routing.registerRoute(

/.+\/api\/.+/,
new workbox.strategies.NetworkOnly({

plugins: [bgSync]
}),
'POST'

);





Command Queue pattern

‘Replay’ when back online

async function replayRequests(o){
if(unableToSend()) return;
while (entry = await o.queue.shiftRequest()) {
try {

if(unableToSend()){ // prevents infinite loop if connectivity drops while replaying
await o.queue.unshiftRequest(entry); return;

}
var req = entry.request.clone();
// fix headers with latest tokens
req.headers.set('Authorization', "Bearer " + self.__authContext.accessToken);
req.headers.set('Authority', self.__authContext.authorityToken);
await fetch(req); 

} catch (error) {
await o.queue.unshiftRequest(entry);

}}
}
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Install on desktop

Progressive Web App behaves like a mobile or desktop app

• Install experience

• Desktop

• Mobile

• Home screen / desktop icon

• Minimal requirements

• Manifest.json file

• HTTPS

• Service Worker







Web App Manifest

Manifest.json

{
"short_name": "Clubmanagement Checkin",
"name": "Clubmanagement Fundraising Checkin",
"description": "An offline tool for handling check-ins at fundraising events",
"lang": "nl-BE",
"icons": [{ "src": "/img/logo_256.png", "type": "image/png", "sizes": "256x256"},

{ "src": "/img/logo_192.png", "type": "image/png", "sizes": "192x192“}, 
{ "src": "/img/logo_512.png", "type": "image/png", "sizes": "512x512"}],

"start_url": "/dashboard/",
"background_color": "#EEEEEE",
"theme_color": "#00A5D5",
"display": "standalone", 
"related_applications": [{

"platform": "web",
"url": "https://fundraising-checkin.clubmanagement.io"
}]

}



Ready for revenge
of the static website ?



Conclusion

Static websites provide a great client development platform

• It’s cheap!

• It’s simple!

• Single codebase for any app (PWA)

• Web, desktop & mobile apps!

• Offline



Q&A





yves@goeleven.com
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