

Yves Goeleven
Solution Architect & Azure MVP

• Particular Software / NServiceBus

• Side projects

• MessageHandler: Event stream processing & event sourcing framework

• Dish: Static site generator

• ClubManagement.io: Progressive Web Apps for managing sports clubs

• Azure MVP since 2010

• Co-founder & board member @ AZUG.be

• Board member @ Basket Lummen

This means I’m
old & develop

software

Web development

A brief history with major milestones

1993 Today1995

First browser war!
Client side incompatibilities, but

you could standardize on IE

1996 2004

Second browser war!
More browsers,

more incompatibilities

20092007

Third browser war!
Battle against mobile leads to standardization

2012

Revenge of the static website

Why?

3 reasons

• It’s cheap!

• It’s simple!

• Single codebase for any app (PWA)

• Web, desktop & mobile apps!

• Offline

The story of basketlummen.be

The story of basketlummen.be

Cost

Model

Simple

Architecture

Offline App

Increase
compared to

previous hosting
Flat rate

That’s more like
it!

Usage based

More value for less money

New site is a lot bigger than the old one

The story of basketlummen.be

Cost

Model

Simple

Architecture

Offline App

Old site

Architecture

Browser

Server

#@ %!)

New site

JAM Stack

Browser

NOT MY PROBLEM!

The story of basketlummen.be

Cost

Model

Simple

Architecture

Offline App

New fundraising app

Progressive Web App

Browser

NOT MY PROBLEM!

Setting up cheap hosting

Azure

Storage

Azure CDN DNS

Required for

service worker

Setting up cheap hosting

Azure

Storage

Azure CDN DNS

Why CDN?

2 reasons

• FREE SSL for custom domain names!

• Reduce storage transaction costs

• Ensure cache control headers are set on blobs!

Setting up cheap hosting

Azure

Storage

Azure CDN DNS

Managing the site content

Dynamic

content

Static Site

Generation

Local

Experience

Publishing

Process

Dynamic content

The traditional way: render on every request

Browser

Server

#@ %!)

Dynamic content

Not all content is equal

Change rate vs
user expectations

Real Time Delay Stale

No changes Manual publishing Manual publishing Manual publishing

Occasional On every request Automated publishing Manual publishing

Frequent On every request Automated publishing Manual publishing

In a static site context

• On every request: API call with client side rendering

• Manual publishing: Update the site and publish

• Automated publishing: Plug the publishing process into your business

processes

Managing the site content

Dynamic

content

Static Site

Generation

Local

Experience

Publishing

Process

Static site generator

An essential tool in the publishing process

• Renders a website from content files

• Content files in appropriate format

• Text: markdown

• Config: Yaml

• Templates: Handlebars

• A multistep build pipeline (chain of responsibility)

• Read files

• Preprocessing steps

• Rendering

• Postprocessing steps

• Most popular ones: Jekyll, Hexo, Hugo, …

Introducing DISH

Why I built my own static site generator

• A library

• Plug into my business logic

• .Net core

• Full control of the pipeline

• E.g. publish to azure storage static websites

Managing the site content

Dynamic

content

Static Site

Generation

Local

Experience

Publishing

Process

Local Experience

Requires a command line tool

• Write a console app using the library

• Main generation methods

• Run: executes the pipeline

• Serve: hosts the site locally in Kestrel

• Publish: uploads the site to azure storage static websites

Managing the site content

Dynamic

content

Static Site

Generation

Local

Experience

Publishing

Process

Publishing process

End to end process

Sources in
github

Pull
Run site

generation
Publish Purge CDN

Yes, some
parents do
submit PR’s

Dish

Manual or
Microsoft.Azure.

Management.Cdn

Manual or
invocation from

code using
octokit

Building offline apps

Google

workbox

App Shell

pattern

Command

Queue Pattern

Install on

desktop

How it works when offline

Service Worker intercepts and serves from IndexedDB

Browser

Services

X

Service Worker

Background worker for a web pages

• Also runs when browser is closed!

• Available events

• Install: Fired whenever the worker gets installed (happens only once)

• Activate: Fired whenever a loaded page connects to the worker

• Fetch: Fired every time a connected client performs a request

• Message: Communication between frontend thread and background worker

• Sync: Fired after device comes online

• Push: Fired when device receives a push notification

• But you need to write code to handle all those events

self.addEventListener('install', function(event){
// your code here
});

Google workbox

A set of common patterns for Service Worker

• A javascript library on top of indexed DB & cache storage responding to service worker events

• Available modules

• Precaching: preload files on install

• Routing: configure how to handle specific web requests

• Strategies: caching strategies

• Expiration: remove cached entries

• BackgroundSync: resubmit commands after coming online

• …

importScripts('https://storage.googleapis.com/workbox-cdn/releases/3.6.1/workbox-sw.js');

workbox.core.setCacheNameDetails({
prefix: 'clubmgmt-fundraising-checkin-cache’,
suffix: ‘1.0.0.0’

});

Building offline apps

Google

workbox

App Shell

pattern

Command

Queue Pattern

Install on

desktop

App Shell pattern

‘Installation’ of all files of the web app

• Service worker ‘Install’ event
• All essential files for the app will be downloaded and cached
• Route with a ‘Cache-first’ policy: Cache Falling Back to Network

• Files must be versioned
• Revision hashes generated by Dish postprocessing step

• Embed hashes, service worker file must change for changes to take effect

• Your app shell can run offline now, future pages served from cache

workbox.precaching.precacheAndRoute(self.__precacheManifest || []);

self.__precacheManifest = [
{ url:’/index.html', revision: '16a3cdb338289d….74564ccd3db2430bac’ },
{ url:'/css/bootstrap.min.css', revision: '5a3d8c05785485d3….8b5bd7b0f3168fff1bd9a' },
{ url:'/css/console.css', revision: '900797671c753ea9b421….f1db2874f32d6264996801' },
….

]

Building offline apps

Google

workbox

App Shell

pattern

Command

Queue Pattern

Install on

desktop

Command Queue pattern

‘Store and forward’ command requests when offline

• Store ‘POST’, ‘PUT’ & ‘DELETE’ requests on failure to send

const queue = new workbox.backgroundSync.Queue('bg-queue', {
onSync: replayRequests,
maxRetentionTime: 7 * 24 * 60 // Retry for max a week

});
const bgSync = {
fetchDidFail: async ({ request }) => {

await queue.pushRequest({ request });
}

}
workbox.routing.registerRoute(

/.+\/api\/.+/,
new workbox.strategies.NetworkOnly({

plugins: [bgSync]
}),
'POST'

);

Command Queue pattern

‘Replay’ when back online

async function replayRequests(o){
if(unableToSend()) return;
while (entry = await o.queue.shiftRequest()) {
try {

if(unableToSend()){ // prevents infinite loop if connectivity drops while replaying
await o.queue.unshiftRequest(entry); return;

}
var req = entry.request.clone();
// fix headers with latest tokens
req.headers.set('Authorization', "Bearer " + self.__authContext.accessToken);
req.headers.set('Authority', self.__authContext.authorityToken);
await fetch(req);

} catch (error) {
await o.queue.unshiftRequest(entry);

}}
}

Building offline apps

Google

workbox

App Shell

pattern

Command

Queue Pattern

Install on

desktop

Install on desktop

Progressive Web App behaves like a mobile or desktop app

• Install experience

• Desktop

• Mobile

• Home screen / desktop icon

• Minimal requirements

• Manifest.json file

• HTTPS

• Service Worker

Web App Manifest

Manifest.json

{
"short_name": "Clubmanagement Checkin",
"name": "Clubmanagement Fundraising Checkin",
"description": "An offline tool for handling check-ins at fundraising events",
"lang": "nl-BE",
"icons": [{ "src": "/img/logo_256.png", "type": "image/png", "sizes": "256x256"},

{ "src": "/img/logo_192.png", "type": "image/png", "sizes": "192x192“},
{ "src": "/img/logo_512.png", "type": "image/png", "sizes": "512x512"}],

"start_url": "/dashboard/",
"background_color": "#EEEEEE",
"theme_color": "#00A5D5",
"display": "standalone",
"related_applications": [{

"platform": "web",
"url": "https://fundraising-checkin.clubmanagement.io"
}]

}

Ready for revenge
of the static website ?

Conclusion

Static websites provide a great client development platform

• It’s cheap!

• It’s simple!

• Single codebase for any app (PWA)

• Web, desktop & mobile apps!

• Offline

Q&A

yves@goeleven.com

	GENENRAL TEMPLATE
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: More value for less money
	Slide 17
	Slide 18: Old site
	Slide 19: New site
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: New fundraising app
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: How it works when offline
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

