
Fantastic 9
Yves Goeleven

yves@goeleven.com
@yvesgoeleven

Yves Goeleven
Freelance Solution Architect

• My mission is to simplify distributed software development (on Azure)

• Advisory consulting, coaching & training

• Currently advising teams @ Q-Park & Cegeka

• More info at: www.goeleven.com

• Still building software (for) myself

• www.clubmanagement.io

• www.messagehandler.net

http://www.goeleven.com/
http://www.clubmanagement.io/
http://www.messagehandler.net/

Transaction scriptTable module

Service Layer

Active record

Table data gateway

Unit of work

Identity Map Value Object

Aggregate Root

Repository

Registry
Data Transfer Object

Gateway
Record Set

Application Controller

Front Controller

Domain model

Pipes and filters

Bridge

Aggregator

Splitter

Mapper

Wrapper

Claim check

Normalizer
Proxy

Wire tap
Entity

Factory

Builder

Singleton Prototype

Adapter

Decorator

Facade

Memento

Flyweight
Interpreter

Strategy
Template

Mediator

Observer
Composite

Query object

Specification

Complexity is our enemy

Once upon a time a software legend revealed the secret

Why 9 ?

Messaging
Passing information across time

Einstein's theory of relativity: space and

time are two sides of the same coin.

Past, present and future

Time only consists of 3 divisions

Past Present Future

- Event
- Fact
- Certain outcome

- State
- Properties
- Slowly evolving

- Command
- Intent
- Uncertain outcome

Confirm
Purchase

Order

Booking
Received

Purchase Order

These are your 9 fantastic processing patterns

Which leaves us with 9 transitions

In\Out Command Event State

Command

? ? ?

Event

? ? ?

State

? ? ?

Feel free to steal them

My fantastic 9

In\Out Command Event State

Command Delegation Aggregate Root Downstream Activity

Event Reaction Event Stream Processing Projection

State Task processing Event Generator State Transformation

… or less

system categories require only a subset

Line Of Business Internet Of Things Business Intelligence

Task processing -> Aggregate Root -> Projection

Line Of Business

Projection

Customer

Product inquiry

Booking

Task Processing

Aggregate
Root

Booking
Started

Sales
Order

Place
Order

Products

Aggregate root

(The decider)

Decides what will happen in the system.

Decides upon commands, records decisions as events

• Use to protect the system when taking a meaningful decision

Aggregate root

Event

Command Event

Event

Aggregate Root

Hosted in web api

• Past decisions stored in an event store

• Easy to deduplicate

• Just check existence event

• Optional outbox

• When distribution is needed

Event sourcing

Event

Command

Event

Event

Aggregate Root

placeOrder()
// validate
Emit(Booked())

Outbox Event

HTTP POST

Task

Processing
Makes choices, based on current state

Makes choices, by invoking an action after looking at state

• Use this pattern every time a task needs to be invoked after a certain condition

has become true.

• Sometimes called: the todo-list pattern

Task Processing

State Task Processing Command

Let a user make the choices.

Conditions unknown

State Product Catalog Command

API

/products/

API

/orders/place/

HTTP GET HTTP POST

I was considering to let AI make the choices

• AI automation tools: LangChain, AutoGPT, …

• Until… goblin.tools (by Bram De Buyser) came up with this

Conditions unknown

https://goblin.tools/

Can be automated by code

• Embed full state in the command

• Optionally use delayed delivery (feature queuing transport).

Conditions known / only limited to time

Api

Cleanup(personal
details, 1year)

Handler

Cleanup(personal
details)

Command

State

Can be automated with code

• Background service continuously queries state until condition is met,

• Then invokes command (usually in process)

Complex known conditions

Background Service

Send(Email,
Preferences)

StateState

Command

Projection

Turn event history into human readable state

Turn event history into human readable state

• Use this pattern every time a user needs to see the current state of the system.

Projection

Event

Event

Event

State

Projection

salesOrder.name
= booked.product.name

On demand projection for session consistency

• Same person that invoked a command

• Will also query for to the result

Same person

Event

Event

Event

Projection

HTTP GET

State

Eventual consistency and polyglot persistence

• Another person wants to see the result of a command (typically, a bit later)

• Store the projected state in a database

• Database type most suitable to query

Another person

Event Outbox Event

Handler

salesOrder.name
= booked.product.name

State

UI

Common additions: Reaction & Delegation

What you’ve seen so far was CQRS + ES

Customer

Product inuiry

Booking
Booking
Started

Sales
Order

Place
Order

Products

Reaction

Delegation

Send
Email

Reaction

Take action in response to an event

Invoke an action in response to an event

• Use this pattern every time something needs to happen in reaction to something

else that happened before.

Reaction

CommandReactionEvent

Best effort execution of the command

• Notify a person who may or may not be paying attention

• Through a transient channel (e.g., Websockets/SignalR)

Transient reactions

Event

Event

Event

SignalR

/showNotification/

Websockets

Command

Queues offer guaranteed delivery

• Obligation to perform a command (e.g., sending an order confirmation)

• Use a transport with delivery guarantees

Guaranteed Reaction

Event Outbox Event
Handler

sendConfirmation()

Command

Delegation

Delegate the execution of a command to another

component

Delegate the execution of a command to another component

• Use this pattern every time something needs to happen in another (specialized)

location.

Delegation

CommandDelegationCommand

That turn out to be bloody b**tch*s

• Email (SPF, DMARC, DKIM, …)

• Payments (PA-DSS, PCI-DSS, 3DS, LoA EMVCo, …)

• Delegate to the pro’s

Seemingly simple commands

Handler Send Email
Sendgrid /
Postmark

Send the actual
emailEvent

HTTP POST

System categories

Line Of Business Internet Of Things Business Intelligence

Event Generator -> Event Processing -> Reaction -> Downstream Activity

Internet Of Things

Presence Detection

Doorlock

Access Control

Downstream
Activity

Presence
Detected

Presence
Detected

Access
Granted

Open
(high)

Open Door

Event Processing

Presence
Detected

Event Generator

Reaction

Event

Generator
Turn state changes into events

Turn state changes into events

• Typical use is to capture state changes, in the real world, through sensors.

• Virtual event generators can be useful to detect changes in databases (Change

Data Capture / Cosmos DB Change feed).

Event generator

Event GeneratorState

Event

Event

Event

The event generator is typically hosted in a (micro) controller

• Hardware reports state

• Attached (micro) controller detects state changes, reports as discrete events

• Discrete event are forwarded to local broker (mqtt based)

• Field gateway captures all events and appended to streaming / log based

transport (e.g. IoT Hub or Event Hub)

A typical field setup

Field gatewayState Event Event EventLocal broker
controller

dispatch(changed)

Event Event

MQTT MQTT AMQP

High/Low IO

Byte[]

Stream

Processing
Derive events from other events

Derive events from event history

• Use to filter, count, group, join or window event streams

• Into a new derived event.

Event stream processing

Event

Event

Event

EventEvent Stream
Processing

Consuming from a streaming transport

• Azure Databricks (Java/Scala or python)

• Azure Stream Analytics (SQL)

• Reactive / Reaqtive Extensions (C#) (by Bart De Smet)

• Neural Nets

Needs a standing query engine

Event Event Event

Select * from
stream into new

event
Event

To invoke a downstream activity

Followed by a reaction

CommandReactionEvent

Downstream

Activity

Takes action on reality

Takes action on reality

• Use this pattern every time a command needs to result in an immediate state

change of the system.

Downstream activity

StateActivityCommand

Activity hosted in a (micro) controller

• Command arrives via a queue (e.g. IoT Hub cloud-to-device messages)
• Activity code hosted in a (micro) controller

• Activity sets IO state of an actuator (e.g. relay) to high or low.

A typical field setup

controller

open()
Command

State
(high/low IO)

MQTT

System categories

Line Of Business Internet Of Things Business Intelligence

Event Generator -> Event Processing -> Projection -> State Transformation

Business Intelligence

Presence Detection

Asset Management

Presence
Detected

Presence
Detected

Event Processing

Presence
Detected

Event Generator

Occurrences

Vandalism Detection

Management

Asset
Report

Asset
Information

State Transformation

Hot Path Cold Path

Projection

Vandalism
Detected

State

Transformation

Change the shape of state

Change the format of state

• Use this pattern to store, or show, existing data in a different structure.

State transformation

StateState TransformationState

Extract transform load

• Azure Databricks (Java/Scala or Python)

• Azure Data Factory (Visual)

• Roll your own (C#)

Extract transform load

State
Transform

import()
State

Extract Load

Show transformed data in UI

• Dashboards

• Reports

• PDF/Excel/….

• HTTP GET API’s

• Are all state transformations

Reporting

State

Query

Transformation

State

HTTP GET

Orchestration Choreography

Integration styles

Bonus

Orchestration

Delegation based integration style

Integration style achieved by chaining delegations

Orchestration

Command

Orchestration

Event
Aggregate

Root

Command Event
Aggregate

Root

Command Event
Aggregate

Root

Command

Stream
Processing

Event Projection State

State
Task

Processing

State
Transforma

tion

State

Event
Event

Generator

Event

Choreography

Reaction based integration style

Integration style achieved by chaining reactions

Choreography

CommandReaction

Event

Event
Aggregate

Root

CommandReaction Event
Aggregate

Root

CommandReaction Event
Aggregate

Root

Stream
Processing

Event Projection State

State
Task

Processing
Command

Aggregate
Root

State
Transforma

tion

State

Event
Event

Generator

We reached the end of our journey

Heuristics to reason about distributed system design and pattern

• Focus on information flow over time

• Not on data structure

• 3 types of information:

• In accordance with divisions of time

• command, event, state

• 9 transition patterns

• Understand your system category

to reduce further

• Feel free to choose your own

Key take aways

In\Out Command Event State

Command
? ? ?

Event
? ? ?

State
? ? ?

Projection

Customer

Product catalog

Booking

Task Processing

Aggregate Root

Bookin
g

Started

Sales
Order

Place
Order

Products

Example code available, in C#, based on MessageHandler 4.0

• Quick starts for each of the presented patterns

• End-to-end scenario for line of business application (e-commerce)

Or feel free to use mine

https://www.messagehandler.net/patterns/

https://www.messagehandler.net/patterns/

yves@goeleven.com

	Default Section
	Slide 1: Fantastic 9
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

