


Yves Goeleven
Independent Solution Architect

• My mission is to simplify distributed software development on Azure

• 22 years of experience, in Azure since 2008

• Co-founder AZUG, crew member Cloudbrew, first belgian Azure MVP

• Still building software (for) myself

• www.clubmanagement.io

• www.messagehandler.net

http://www.clubmanagement.io/
http://www.messagehandler.net/




Most common feedback for all Azure Services

I need a local emulator



Good reasons people ask for this

• The ability to run an app offline

• To eliminate latency

• Improve test performance

• Environment per developer 

• Test isolation

• Easier to debug state locally

• Avoiding development costs

Origin of the question





Good reasons not to use emulators

• When your system fits on your laptop, do you 

really need a cloud?

• Emulators behave different from the real service

• E.g. different response codes

• Service limits are vastly different. (rps)

• Emulators are not hostile towards your code 

• E.g. throttling

• Latency matters: more likely to result in chatty 

code

• You need to know your operational costs asap

• How you code makes a massive difference

Why not?



Old men arguing on the internet

The tension is rising







How it is supposed to work

• 1 Manual test

• 10 Integration tests

• 100 Component tests

• 1000 Unit tests

• This person is testing manually

The testing pyramid



Our pyramids tend to be a bit top heavy

• 100 Manual tests

• 1000 Integration tests

• 100 Component tests

• 1000 Unit tests

What most of us do



Multiple reasons

• Don’t trust unit tests

• Desire to visually confirm 

• Fail to decompose our business 

domain

• Disconnect QA & Dev

Why ?



Fake data not matching real data

• Unit tests use fake data

• Not in correspondence with reality

• Therefore need for more

• Manual & Integration tests

• Using real data

• Thus, need for a live system

• Works only for small systems

Distrust in unit tests





Tests for your test data

• Tests for your test data

• Perform a few narrow integration tests

• Against the real service

• Serialize and store output in a verification file

• In a contract test 

• Assert the test data against verification

• Use equality or equivalence assertions

• You can now trust your test data suite

• Reuse in 1000s of unit and component tests

• Without hitting the network

Add contract testing



Using string comparison

• Serialize actual test data to file

• Expectation in verification file

• Assert.Equal(expected, actual)

• Benefits

• Absolute equality

• Diff tools allow you to inspect 

the file content visually

• Downsides

• Manual file management

• Some properties may vary 

between runs, e.g. timestamps

Manual assertions



Using Verify (By Simon Cropp)

• No file management needed

• Available for multiple dependency types

• Supports ‘Scrubbers’

• Replaces values of certain types

• Timestamps, guids, machine name, …

• Alternatives:

• Use BeEquivalentTo comparison of Fluent 

Assertions on deserialized verification files

• Pact.Net, biased towards API output only

Verification frameworks







How it can actually work

• 1 Manual test

• 10 Integration tests

• 100 Contract tests

• 1000 Component tests

• 10000 Unit tests

New testing pyramid





Keep individual test runs below 10 seconds

• Additional practices

• IO To the boundary

• Proper functional decomposition

I challenged my team



Only IO at specific points in call stack

• At an entry point 

• e.g. API controller

• Load all data needed for the 

transition

• No IO in the middle

• At the exit point

• 1 outbound IO operation

• e.g. Save

• Maximum 1!!!!!!!!

• Makes component testing a lot easier

IO to the boundary









Catalog 
Management

SalesProduct
Purchase 

Order 
Configuration

Offer
Order 

Booking
Purchase 

Order
Order 

Processing ...
Sales 
Order

Need for proper functional decomposition

• All data is the result of process transitions (business capabilities)

• Tendency to see, and test, this process as a whole

• Resulting in manual tests or broad integration tests (E2E tests)

Failure to decompose business processes



Catalog 
Management

SalesProduct
Purchase 

Order 
Configuration

Offer
Order 

Booking
Purchase 

Order
Order 

Processing ...
Sales 
Order

With sequences of unit testing and contract testing

• The transitions can be tested using unit testing

• The exchanged data through contract testing

Replace slow end to end tests

Unit testing Unit testing Unit testing Unit testing Unit testing

Contract 
testing

Contract 
testing

Contract 
testing

Contract 
testing



With the dependents of your API

• Write contract tests for your own 

API

• Embed tests & verification files 

in source package

• Share with dependents

• Run tests on both ends

• Both teams can now trust the 

test suite

Share contract tests



Catalog 
Management

SalesProduct
Purchase 

Order 
Configuration

Offer
Order 

Booking
Purchase 

Order
Order 

Processing ...
Sales 
Order

To keep test runs short

• Separate git repository or solution per business capability

• With automated build and test run

Split your code base

git repository 

with solution 

and automated 
build

git repository 

with solution 

and automated 
build

git repository 

with solution 

and automated 
build

git repository 

with solution 

and automated 
build

git repository 

with solution 

and automated 
build



Just another contract test

• Instead of serializing in JSON

• Serialize in HTML (or XAML, or bitmap)

• Perform equality or equivalence comparisons

• Verify: Blazor, Images, Xamarin, Xaml, …

• Jest: HTML, CSS, JS, Images, …

UI snapshot test





It does not matter you trust your tests

• When QA doesn’t know about, or does not trust, 

the unit test set

• They will still test manually

• Or use slow end to end integration tests

Organizational Trust



Part 1

• During sprint planning talk 

about the end to end scenarios

• Map the end to end scenarios to

Unit tests

• Visual Studio / Azure Devops

• Let QA team review the unit tests 

for readability

Set up feedback loop



Part 2

• Replicate any bug as a failing unit test 

• Before fixing it

• Let QA report exploratory tests that succeeded

• Add these as a unit test

• Eventually all scenarios will get covered

• Visualize on a dashboard

• Report unit tests results

• Aggregate per end to end scenario

Set up feedback loop



A Summary

• Adjust your testing practices

• Use real services, but sparingly

• Ensure an in-memory dataset 

that you and your organization 

can trust.

• Set up a feedback loop to 

improve your test suite over time

Before you run



Additional resources

• Simon Cropp’s Verify Framework
• https://github.com/VerifyTests/

• Dennis Doomen’s Fluent Assertion Framework
• https://github.com/fluentassertions/fluentassertions

• Pact Foundation, Pact.Net
• https://github.com/pact-foundation/pact-net

• Jest Snapshot Testing 
• https://jestjs.io/docs/snapshot-testing

• Associate automated unit tests with test cases
• https://learn.microsoft.com/en-us/azure/devops/test/associate-

automated-test-with-test-case?view=azure-devops

Thank you for your attention

https://github.com/VerifyTests/
https://github.com/fluentassertions/fluentassertions
https://github.com/pact-foundation/pact-net
https://jestjs.io/docs/snapshot-testing
https://learn.microsoft.com/en-us/azure/devops/test/associate-automated-test-with-test-case?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/test/associate-automated-test-with-test-case?view=azure-devops



	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39


