

Yves Goeleven

* My mission is to simplify distributed software development on Azure
« 22 years of experience, in Azure since 2008

« Co-founder AZUG, crew member Cloudbrew, first belgian Azure MVP
« Still building software (for) myself

« www.clubmanagement.io
« www.messagehandler.net

http://www.clubmanagement.io/
http://www.messagehandler.net/

| need a local emulator

Local development story? #2273

jbogard opened this issue on Aug 15, 2018 - 88 commaents

e jbogard commented on Aug 15, 2018 Contributor .~ () +++
Trying to get an understanding of what the local development story is. RabbitMQ for example can be installed on a dev machine, or
run as a Docker container. If | have development/build imaggs that need 8711re Service Bie what'c the stnry of netting a ninnahle
instance locally? Like t:io 2 Reply

Bz B0 Qo g7 g3

.ﬁ SeanFeldman commented on Aug 15, 2018

There's no story Jimmy. Either MSDN or anather Azure subs:

P @n Like - €3 | Reply - 2

Mo local development for Azure Service Bus, sadly

G Posted in AP| Management

109
o Microsoft « 7 years ago

Deploy APIM in Azure Emulator to allow for local testing of configurations

Add APIM to the Azure emulator to allow testing of routing and policies| o o Microsoft - 6 years ago
1

2,63

S | 7management experience Add DocumentDB Emulator support for Mac OS X and *nix
- - The DocumentDB Emulator currently only supports Windows 10.1t would be great if support for Mac OS X could be added or
[0Comments ¥r Follow & Share ~ 3 0DFlags documentation to run it on other platforms.
Plenned Emulator

o Microsoft @ Company Respanse - 1 year ago

We are going to move this back to Planned until we release suppart for all database API's. Will then mark as completed. Thank
you.

(3 3 Comments ¥ Follow 1 Share ~ [0Flags

« The ability to run an app offline
* To eliminate latency

* Improve test performance

« Environment per developer

+ Test isolation

 Easier to debug state locally

* Avoiding development costs

Why not?

« When your system fits on your laptop, do you
really need a cloud?
« Emulators behave different from the real service
« E.g. different response codes
 Service limits are vastly different. (rps)
~ » Emulators are not hostile towards your code
« E.g. throttling
B - Latency matters: more likely to result in chatty
code
* You need to know your operational costs asap
« How you code makes a massive difference

The tension is rising

f @clemensv

@ Clemens Vasters @@ - g \

Replying to

There's no “localhost development” for
anything of serious complexity. Develop on |
the cloud. A

&:46 PM mgressman commented on Nov 7, 2019

There's no “localhost development” for
anything of serious complexity. Develop on
the cloud.

This just amazes me.

| don't know how many times | have been in a disconnected situation (e.g. 14 hour plane flight overseas) where | would love to get
some of my development work done but can't because somebody, somewhere decides to take that kind of a stance.

Can | work around it or on something besides the ASB part? Sure. But why should | have to be told what | can and can't work on

based on my connected status.

O &6 (@3 (aw3

=4

o

s
v
P
A
3L
=

The testing pyrami

* 1 Manual test

* 10 Integration tests

* 100 Component tests
* 1000 Unit tests

* This person is testing manually

mgressman commented on Nov 7, 2019

There's no “localhost development” for
anything of serious complexity. Develop on
the cloud.

This just amazes me.

| don't know how many times | have been in a disconnected situation (e.g. 14 hour plane flight overseas) where | would love to get
some of my development work done but can't because somebody, somewhere decides to take that kind of a stance.

Can | work around it or on something besides the ASB part? Sure. But why should I have to be told what | can and can't work on
based on my connected status.

@ é66 (@3 w3

What most of us do

* 100 Manual tests
* 1000 Integration tests

* 100 Component tests
* 1000 Unit tests

Why ?

Multiple reasons

Don't trust unit tests

Desire to visually confirm

Fail to decompose our business
domain

Disconnect QA & Dev

Distrust in unit tests

« Unit tests use fake data
* Not in correspondence with reality
* Therefore need for more
 Manual & Integration tests
» Using real data
 Thus, need for a live system e
* Works only for small systems :

% 9% Clemens Vasters @@ - g
" ¥ @clemensy

Replying to

There's no “localhost development” for
anything of serious complexity. Develop on
the cloud.

8:46 PM - 28 Dec 2018

Add contract testing

- . , Tests for your test data

‘ « Perform a few narrow integration tests
« Against the real service

 Serialize and store output in a verification file

\ >

=N« |na contract test
" « Assert the test data against verification
» Use equality or equivalence assertions

* You can now trust your test data suite
* Reuse in 1000s of unit and component tests
« Without hitting the network

Manual assertions

 Serialize actual test data to file
« Expectation in verification file
« Assert.Equal(expected, actual)

« Benefits
» Absolute equality
» Diff tools allow you to inspect 2
the file content visually

» Downsides
« Manual file management
* Some properties may vary
between runs, e.g. timestamps

Verification frameworks

* No file management needed
 Available for multiple dependency types

i e Supports ‘Scrubbers’
« Replaces values of certain types
« Timestamps, guids, machine name, ...

« Alternatives:
« Use BeEquivalentTo comparison of Fluent
Assertions on deserialized verification files
« Pact.Net, biased towards API output only

New testing pyramid

1 Manual test

* 10 Integration tests

* 100 Contract tests

* 1000 Component tests
« 10000 Unit tests

| challenged my team

« Additional practices
* |O To the boundary
* Proper functional decomposition

|O to the boundary

« Atan entry point
* e.g. APl controller
* Load all data needed for the
transition

* No IO in the middle

« At the exit point
* 1 outbound IO operation
* e.g.Save
« Maximum 1!

« Makes component testing a lot easier

Failure to decompose business processes

 All data is the result of process transitions (business capabilities)
« Tendency to see, and test, this process as a whole
« Resulting in manual tests or broad integration tests (E2E tests)

Purchase
Product Sales Offer Order
Configuration

Catalog Purchase Order Sales Order

Management

Order Booking Order Processing ...

Replace slow end to end tests

« The transitions can be tested using unit testing
* The exchanged data through contract testing

Catalog
Management Product Sales
A
Unit testing Unit testing
Contract

testing

Purchase
Offer Order
Configuration

A

Unit testing

Contract
testing

Purchase Order
Order Booking
A
Unit testing
Contract
testing

Sales Order
Order Processing ...
A
Unit testing
Contract
testing

Share contract tests

« Write contract tests for your own
API

« Embed tests & verification files
In source package

« Share with dependents
 Run tests on both ends

« Both teams can now trust the
test suite

Split your code base

« Separate git repository or solution per business capability
« With automated build and test run

Catalog
Management

git repository
with solution
and automated
build

Product Sales

git repository
with solution
and automated
build

Offer

Purchase
Order
Configuration

git repository
with solution
and automated
build

Purchase

Order

Order
Booking

git repository
with solution
and automated
build

Sales
Order

Order
Processing ...

git repository
with solution
and automated
build

Ul snapshot test

 Instead of serializing in JSON
 Serialize in HTML (or XAML, or bitmap)

« Perform equality or equivalence comparisons

 Verify: Blazor, Images, Xamarin, Xaml, ...
"« Jest: HTML, CSS, JS, Images, ...

.\3\ Organizational Trust
sl

* When QA doesn’t know about, or does not trust,
the unit test set

* They will still test manually

s+ Or use slow end to end integration tests

Set up feedback loop

* During sprint planning talk
about the end to end scenarios

* Map the end to end scenarios to

Unit tests
* Visual Studio / Azure Devops

 Let QA team review the unit tests
for readability

Set up feedback loop

» Replicate any bug as a failing unit test
« Before fixing it

. * Let QA report exploratory tests that succeeded
2P |+ Add these as a unit test

- Eventually all scenarios will get covered
* Visualize on a dashboard

* Report unit tests results
« Aggregate per end to end scenario

Before you run

» Adjust your testing practices

» Use real services, but sparingly

* Ensure an in-memory dataset
that you and your organization

can trust.

« Set up a feedback loop to
Improve your test suite over time

Thank you for your attention

« Simon Cropp’s Verify Framework
« https://github.com/VerifyTests/

* Dennis Doomen’s Fluent Assertion Framework
« https://github.com/fluentassertions/fluentassertions

« Pact Foundation, Pact.Net
« https://github.com/pact-foundation/pact-net

d * Jest Snapshot Testing
» https://jestjs.io/docs/snapshot-testing

» Associate automated unit tests with test cases
» https://learn.microsoft.com/en-us/azure/devops/test/associate-
automated-test-with-test-case?view=azure-devops

https://github.com/VerifyTests/
https://github.com/fluentassertions/fluentassertions
https://github.com/pact-foundation/pact-net
https://jestjs.io/docs/snapshot-testing
https://learn.microsoft.com/en-us/azure/devops/test/associate-automated-test-with-test-case?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/test/associate-automated-test-with-test-case?view=azure-devops

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

